
Partial Solutions to Exercises

from Nelsen’s Copula Book

by

Guanjie Lyu

June 30, 2024



Note to the Reader

I decided to write these solutions because I found great joy and pleasure in solving

the exercises from this excellent textbook “Nelsen, R. B. (2006) An Introduction to

Copulas, Second Edition, Springer” on copulas. This book is a fantastic resource for

beginners, but I noticed there isn’t an official solution guide available online. So, I

thought it would be fun to share my solutions with others who might be interested.

These solutions are intended for educational and self-study purposes only. They are

meant to enhance your understanding of the material, not to replace the original

content of the book. These solutions are offered freely—not for sale or commercial

use. As you use this guide, be sure to follow the rules and policies of your academic

institution regarding the use of external resources.

The textbook exercises and any direct quotations are the intellectual property of

their respective authors and publishers, who deserve all the credit for their invaluable

work. Any mistakes or errors in these solutions are entirely my own. If you find

any mistakes, I would really appreciate it if you could let me know (email address:

guanjielyu@gmail.com).
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CHAPTER 1

Solutions for Chapter 2

Exercise 2.1 (1) LetH be the function defined on I2 byH(x, y) = max(x, y). Clearly,

let x1 ≤ x2, y1 ≤ y2,

H(x2, y)−H(x1, y) = max(x2, y)−max(x1, y) ≥ 0,

and

H(x, y2)−H(x, y1) = max(x, y2)−max(x, y1) ≥ 0,

Thus H is non-decreasing in each argument. However,

VH(I
2) = H(1, 1) +H(0, 0)−H(0, 1)−H(1, 0)

= max(1, 1) + max(0, 0)−max(1, 0)−max(0, 1)

= −1 < 0.

Therefore, H is not 2-increasing.

(2) Let H be the function defined on I2 by H(x, y) = (2x − 1)(2y − 1). WLOG,

let B ∈ I2 with vertices (x1, y1), (x2, y2) ∈ I2 such the x1 ≤ x2, y1 ≤ y2,

VH(B) = H(x1, y1) +H(x2, y2)−H(x1, y2)−H(x2, y1)

= (2x1 − 1)(2y1 − 1) + (2x2 − 1)(2y2 − 1)− (2x1 − 1)(2y2 − 1)− (2x2 − 1)(2y1 − 1)

= (2x1 − 1)(2y1 − 2y2) + (2x2 − 1)(2y2 − 2y1)

= (2y2 − 2y1)(2x2 − 2x1) ≥ 0.

Thus H is 2-increasing, but
∂H(x, y)

∂x
= 4y − 2.
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It indicates that ∂H(x,y)
∂x

< 0 when y ∈ [0, 1/2). Thus H is decreasing in x when

y ∈ [0, 1/2). Similarly, H is decreasing in y when x ∈ [0, 1/2).

Exercise 2.2 Show that M(u, v) = min(u, v),W (u, v) = max(u + v − 1, 0) and

Π(u, v) = uv are indeed copulas.

Solution. Let’s check the two axioms of a copula. ⃝∗

M(0, v) = min(0, v) = 0 = min(u, 0) = M(u, 0),

M(1, v) = min(1, v) = v, M(u, 1) = min(u, 1) = u.

and

W (0, v) = max(v − 1, 0) = 0 = max(u− 1, 0) = W (u, 0),

W (1, v) = max(v, 0) = v, W (u, 1) = max(u, 0) = u.

and

Π(0, v) = 0 · v = 0 = u · 0 = Π(u, 0),

Π(1, v) = 1 · v = v, Π(u, 1) = u · 1 = u.

⃝∗ Then check the 2-increase of them. For every (u1, v1), (u2, v2) ∈ I2 such that

u1 ≤ u2, v1 ≤ v2,

M(u1, v1) +M(u2, v2)−M(u1, v2)−M(u2, v1)

= min(u1, v1) + min(u2, v2)−min(u1, v2)−min(u2, v1) = β.

If u1 ≤ v1,

β = u1 +min(u2, v2)−min(u2, v1)− u1 ≥ 0.

If u1 > v1,

β = v1 +min(u2, v2)−min(u1, v2)− v1 ≥ 0.

And

α = W (u1, v1) +W (u2, v2)−W (u1, v2)−W (u2, v1)
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= max(u1 + v1 − 1, 0) + max(u2 + v2 − 1, 0)−max(u1 + v2 − 1, 0)−max(u2 + v1 − 1, 0).

If u1 + v2 ≥ 1,

α = max(u1 + v1 − 1, 0) + max(u2 + v2 − 1, 0)−max(u2 + v1 − 1, 0)− 0 ≥ 0.

If u1 + v2 < 1,

α = 0 +max(u2 + v2 − 1, 0)−max(u2 + v1 − 1, 0) + 0 ≥ 0.

And

γ = Π(u1, v1) + Π(u2, v2)− Π(u1, v2)− Π(u2, v1)

= u1v1 + u2v2 − u1v2 − u2v1

= (u2 − u1)(v2 − v1) ≥ 0.

Exercise 2.3 (a) Let C0 and C1 be copulas, and let θ be any number in I. Show that

the weighted arithmetic mean (1− θ)C0 + θC1 is also a copula. Hence conclude that

any convex linear combination of copulas is a copula.

(b) Show that the geometric mean of two copulas may fail to be a copula.

Solution. (a) Check the two axioms of copula. ⃝∗ The groundedness and uniform

margins are trivial. ⃝∗ The 2-increase is also trivial as (1− θ)VC0(B) + θVC1(B) ≥ 0,

where B is a rectangle in I2.

(b) Let C be the geometric mean of Π and W , then the C-volume of rectangle

[1/2, 3/4]× [1/2, 3/4] is√
Π(1/2, 1/2)W (1/2, 1/2) +

√
Π(3/4, 3/4)W (3/4, 3/4)−

√
Π(1/2, 3/4)W (1/2, 3/4)

−
√
Π(3/4, 1/2)W (3/4, 1/2) =

√
1/4 · 0 +

√
9/16 · 1/2−

√
3/8 · 1/4−

√
3/8 · 1/4

= 1/2(
√
9/8−

√
12/8) < 0.

Therefore C is not a copula.
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Exercise 2.4 The Fréchet and Mardia families of copulas. (a) Let α, β be in I with

α + β ≤ 1. Set

Cα,β(u, v) = αM(u, v) + (1− α− β)Π(u, v) + βW (u, v).

Show that Cα,β is a copula (Fréchet). A family of copulas that includes M,Π,W is

called comprehensive.

(b) Let θ be in [−1, 1] and set

Cθ(u, v) =
θ2(1 + θ)

2
M(u, v) + (1− θ2)Π(u, v) +

θ2(1− θ)

2
W (u, v).

Show that Cθ is a copula (Mardia).

Solution. (a) Since convex combination of copulas is a copula. And α, β, 1−α−β ∈

I with sum to 1. Thus Cα,β is a convex combination of the three copulas, it is indeed

a copula.

(b) Similarly to part (a), Cθ is a convex combination of copulas.

Exercise 2.5 The Cuadras-Augé family of copulas. Let θ ∈ I, and set

Cθ(u, v) = [min(u, v)]θ[uv]1−θ =

uv1−θ, u ≤ v,

u1−θv, u ≥ v.

Show that Cθ is a copula. Note that, C0 = Π and C1 = M . This family is weighted

geometric mean of M and Π.

Solution. Check the two axioms of copula. ⃝∗

Cθ(u, 0) = 0 = Cθ(0, v), Cθ(u, 1) = u, Cθ(1, v) = v.

⃝∗ And for every (u1, v1), (u2, v2) ∈ I2 with u1 ≤ u2, v1 ≤ v2,

α = [min(u1, v1)]
θ[u1v1]

1−θ+[min(u2, v2)]
θ[u2v2]

1−θ−[min(u1, v2)]
θ[u1v2]

1−θ−[min(u2, v1)]
θ[u2v1]

1−θ.

If u2 ≤ v1,

α = u1v
1−θ
1 + u2v

1−θ
2 − u1v

1−θ
2 − u2v

1−θ
1 = (u2 − u1)(v

1−θ
2 − v1−θ

1 ) ≥ 0.
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If v2 > u2 > v1 > u1,

α = u1v
1−θ
1 + u2v

1−θ
2 − u1v

1−θ
2 − u1−θ

2 v1

= [u2v
1−θ
2 − u1v

1−θ
2 ] + v1(u1v

−θ
1 − u2u

−θ
2 )

≥ [u2v
1−θ
2 − u1v

1−θ
2 ] + v1(u1u

−θ
2 − u2u

−θ
2 )

= (u2 − u1)(v2v
−θ
2 − v1u

−θ
2 )

≥ (u2 − u1)(v2v
−θ
2 − v1v

−θ
1 ) ≥ 0.

If v2 > u2 > u1 > v1,

α = u1−θ
1 v1 + u2v

1−θ
2 − u1v

1−θ
2 − u1−θ

2 v1

= [u2v
1−θ
2 − u1v

1−θ
2 ] + v1(u1u

−θ
1 − u2u

−θ
2 )

≥ [u2v
1−θ
2 − u1v

1−θ
2 ] + v1(u1u

−θ
2 − u2u

−θ
2 )

= (u2 − u1)(v2v
−θ
2 − v1u

−θ
2 )

≥ (u2 − u1)(v2v
−θ
2 − v1v

−θ
1 ) ≥ 0.

If u2 > v2 > v1 > u1,

α = u1v
1−θ
1 + u1−θ

2 v2 − u1v
1−θ
2 − u1−θ

2 v1

= (v2 − v1)u2u
−θ
2 + u1(v1v

−θ
1 − v2v

−θ
2 )

≥ (v2 − v1)u2u
−θ
2 + u1(v1v

−θ
2 − v2v

−θ
2 )

= (v2 − v1)(u2u
−θ
2 − u1v

−θ
2 )

≥ (v2 − v1)(u2u
−θ
2 − u1u

−θ
1 ) ≥ 0.

If u2 > v2 > u1 > v1,

α = u1−θ
1 v1 + u1−θ

2 v2 − u1v
1−θ
2 − u1−θ

2 v1

= (v2 − v1)u2u
−θ
2 + u1(v1u

−θ
1 − v2v

−θ
2 )

≥ (v2 − v1)u2u
−θ
2 + u1(v1v

−θ
2 − v2v

−θ
2 )
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= (v2 − v1)(u2u
−θ
2 − u1v

−θ
2 )

≥ (v2 − v1)(u2u
−θ
2 − u1u

−θ
1 ) ≥ 0.

Exercise 2.6 Let C be a copula, and let (a, b) be any point in I2. For (u, v) in I2,

define

Ka,b(u, v) = VC ([a(1− u), u+ a(1− u)]× [b(1− v), v + b(1− v)]) .

Show that Ka,b is a copula. Note that,

K0,0(u, v) = C(u, v),

K0,1(u, v) = u− C(u, 1− v),

K1,0(u, v) = v − C(1− u, v),

K1,1(u, v) = u+ v − 1 + C(1− u, 1− v).

Solution. ⃝∗ Write

Ka,b(u, v) = C(a(1− u), b(1− v)) + C(u+ a(1− u), v + b(1− v))

− C(a(1− u), v + b(1− v))− C(u+ a(1− u), b(1− v)).

Then

Ka,b(0, v) = C(a, b(1− v)) + C(a, v + b(1− v))− C(a, v + b(1− v))− C(a, b(1− v))

= 0

= C(a(1− u), b) + C(u+ a(1− u), b)− C(a(1− u), b)− C(u+ a(1− u), b)

= Ka,b(u, 0).

And

Ka,b(u, 1) = C(a(1− u), 0) + C(u+ a(1− u), 1)− C(a(1− u), 1)− C(u+ a(1− u), 0)
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= u+ a(1− u)− a(1− u) = u

Ka,b(1, v) = C(0, b(1− v)) + C(1, v + b(1− v))− C(0, v + b(1− v))− C(1, b(1− v))

= v + b(1− v)− b(1− v) = v.

⃝∗ Then for every (u1, v1), (u2, v2) ∈ I2 such that u1 ≤ u2, v1 ≤ v2,

α = Ka,b(u1, v1) +Ka,b(u2, v2)−Ka,b(u2, v1)−Ka,b(u1, v2)

= C(a(1− u1), b(1− v1)) + C(u1 + a(1− u1), v1 + b(1− v1))

− C(a(1− u1), v1 + b(1− v1))− C(u1 + a(1− u1), b(1− v1))

+ C(a(1− u2), b(1− v2)) + C(u2 + a(1− u2), v1 + b(1− v2))

− C(a(1− u2), v2 + b(1− v2))− C(u2 + a(1− u2), b(1− v2))

− C(a(1− u1), b(1− v2))− C(u1 + a(1− u1), v2 + b(1− v2))

+ C(a(1− u1), v2 + b(1− v2)) + C(u1 + a(1− u1), b(1− v2))

− C(a(1− u2), b(1− v1))− C(u2 + a(1− u2), v1 + b(1− v1))

+ C(a(1− u2), v1 + b(1− v1)) + C(u2 + a(1− u2), b(1− v1))

= A+B + C +D,

where

A = C(a(1− u1), b(1− v1)) + C(a(1− u2), b(1− v2))

− C(a(1− u2), b(1− v1))− C(a(1− u1), b(1− v2))

= VC ([a(1− u2, a(1− u1))]× [b(1− v2), b(1− v1)]) ≥ 0.

Similarly for B,C,D. Therefore, α ≥ 0.

Exercise 2.7 Let f be a function from I2 into I which is non-decreasing in each

variable and has margins given by f(t, 1) = t = f(1, t) for all t ∈ I. Prove that f is

grounded.
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Solution. We need to prove that on I2 “non-decreasingness + uniform margins

=⇒ groundedness”. For every (x, y) ∈ I2,

0 ≤ f(x, 0) ≤ f(1, 0) = 0, 0 ≤ f(0, x) ≤ f(0, 1) = 0.

Exercise 2.8 (a) Show that for any copula C, max(2t−1, 0) ≤ δC(t) ≤ t for all t ∈ I.

(b) Show that δC(t) = δM(t) for all t ∈ I implies C = M .

(c) Show δC(t) = δW (t) for all t ∈ I does not imply that C = W .

Solution. (a) Write

W (t, t) ≤ C(t, t) ≤ M(t, t) ⇔ max(2t− 1, 0) ≤ δC(t) ≤ min(t, t) = t.

(b) Since for all t ∈ I,

δM(t) = M(t, t) = min(t, t) = t =⇒ δC(t) = C(t, t) = t.

Assume that C ̸= M , then there exists (u, v) ∈ I2 with u ≤ v such that

C(u, v) ̸= M(u, v) =⇒ C(u, v) < M(u, v) = u.

Then by non-decreasingness,

u > C(u, v) ≥ C(u, u) = u,

which is a contradiction.

(c) We just need to show that δC = δW with C ̸= W holds.

Exercise 2.9 The secondary diagonal section of C is given by C(t, 1− t). Show

that C(t, 1− t) = 0 for all t ∈ I implies C = W .

Solution. Assume that C ̸= W , then for all t ∈ I, we have

C(t, 1− t) > W (t, 1− t) = max(t+ 1− t, 0) = 0,

which contradicts C(t, 1− t) = 0.
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Exercise 2.10 Let t be in [0, 1), and let Ct be the function from I2 into I given by

Ct(u, v) =

max(u+ v − 1, t), (u, v) ∈ [t, 1]2,

min(u, v), o.w..

(a) Show that Ct is a copula.

(b) Show that the level set {(u, v) ∈ I2|Ct(u, v) = t} is the set of points in the

triangle with vertices (t, 1), (1, t) and (t, t).

Solution. (a) ⃝∗ Uniform margins and groundedness are trivial. ⃝∗ For every

(u1, v1), (u2, v2) ∈ [t, 1]2 with u1 ≤ u2, v1 ≤ v2,

α = max(u1+v1−1, t)+max(u2+v2−1, t)−max(u1+v2−1, t)−max(u2+v1−1, t).

If u2 + v1 ≥ 1 + t, then

α = max(u1 + v1 − 1, t) + u2 + v2 − 1−max(u1 + v2 − 1, t)− (u2 + v1 − 1) ≥ 0.

If u2 + v1 < 1 + t, then

α = t+max(u2 + v2 − 1, t)−max(u1 + v2 − 1, t)− t ≥ 0.

Therefore Ct is a copula.

(b) Using the Fréchet-Hoeffding bounds,

W (u, v) ≤ Ct(u, v) ≤ M(u, v).

Since Ct is non-decreasing in each argument. The level sets L = {(u, v) ∈ I2 :

Ct(u, v) = t} have bounds

{(u, v) ∈ I2 : W(u, v) = t} ≤ L ≤ {(u, v) ∈ I2 : M(u, v) = t}.



1. SOLUTIONS FOR CHAPTER 2 10

Exercise 2.11 This exercise shows that the 2-increasing condition for copulas is not

a consequence of simpler properties. Let Q be the function form I2 to I given by

Q(u, v) =

min (u, v, 1/3, u+ v − 2/3) , 2/3 ≤ u+ v ≤ 4/3,

max(u+ v − 1, 0), o.w..

That is, Q is given as following figure.

(a) Show that for every u, v ∈ I2,Q(u, 0) = 0 = Q(0, v),Q(u, 1) = u,Q(1, v) =

v; W (u, v) ≤ Q(u, v) ≤ M(u, v); and that Q is continuous, satisfies the Lipschitz

condition, and is non-decreasing in each variable.

(b) Show that Q fails to be 2-increasing, and hence is not a copula.

Solution. (a) The uniform margins and groundedness are trivial. The upper

bounded is clear since min(u, v, 1/3, u + v − 2/3) ≤ min(u, v). The lower bounded

is clear from the figure, in the 1/3 region, 1/3 is the largest value of W in this

region, thus W ≤ Q. The non-decreasingness is obvious. The Lipschitz condition, let

(u1, v1), (u2, v2) ∈ {2/3 ≤ u + v ≤ 4/3} with u1 ≤ u2, v1 ≤ v2. If (u2, v2), (u1, v1) are

in the same region, then A = 0. Consider different region, if (u1, v1) is in u region,

(u2, v2) is in 1/3 region, then

Q(u2, v2)−Q(u1, v1) = 1/3− u1 ≤ u2 − u1 ≤ u2 − u1 + v2 − v1.

Similarly, if (u1, v1) is in u+ v − 2/3 region, (u2, v2) is in 1/3 region, then

Q(u2, v2)−Q(u1, v1) = 1/3− u1 − v1 + 2/3 ≤ u2 − u1 + v2 − v1.
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If (u1, v1) is in u+ v − 2/3 region, (u2, v2) is in u region, then

Q(u2, v2)−Q(u1, v1) = u2 − u1 − v1 + 2/3 ≤ u2 − u1 + v2 − v1.

If (u1, v1) is in v region, (u2, v2) is in 1/3 region, then

Q(u2, v2)−Q(u1, v1) = 1/3− v1 ≤ v2 − v1 ≤ u2 − u1 + v2 − v1.

If (u1, v1) is in u+ v − 2/3 region, (u2, v2) is in v region, then

Q(u2, v2)−Q(u1, v1) = v2 − u1 − v1 + 2/3 ≤ u2 − u1 + v2 − v1.

Therefore, the Lipschitz condition holds.

(b) Consider the Q-volume of the rectangle [1/3, 2/3]2. Then

VQ([1/3, 2/3]
2) = 0 + 1/3− 1/3− 1/3 = −1/3 < 0.

Q is not 2-increasing.

Exercise 2.12 Gumbel’s bivariate logistic distribution. Let X and Y be random

variables with a joint distribution function given by

H(x, y) = (1 + e−x + e−y)−1

for all x, y ∈ R. (a) Show that X and Y have standard univariate logistic distribution,

i.e.,

F (x) = (1 + e−x)−1, G(y) = (1 + e−y)−1.

(b )Show that the copula of X and Y is the copula given by

C(u, v) =
uv

u+ v − uv
.

Solution. (a) It is obvious.

(b) Since

C(u, v) = H(F−1(u), G−1(v)),
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and

F−1(u) = − ln(u−1 − 1), G−1(v) = − ln(v−1 − 1).

We have

C(u, v) = (1 + u−1 − 1 + v−1 − 1)−1 =
uv

u+ v − uv
.

Exercise 2.13 Type B bivariate extreme value distributions. Let X and Y be random

variables with a joint distribution function given by

Hθ(x, y) = exp
(
−
(
e−θx + e−θy

)1/θ)
for all x, y ∈ R, where θ ≥ 1. Show that the copula of X and Y is given by

Cθ(u, v) = exp
(
−
[
−(− lnu)θ + (− ln v)θ

]1/θ)
.

This parametric family of copulas is known as Gumbel-Hougaard family.

Solution. The margins are

F (x) = Hθ(x,∞) = exp(−e−x), G(y) = Hθ(∞, y) = exp(−e−y).

The reverses are

F−1(u) = − ln(− lnu), G−1(v) = − ln(− ln v).

Therefore,

Cθ(u, v) = exp
(
−
[
−(− lnu)θ + (− ln v)θ

]1/θ)
.

Exercise 2.14 Note that Gumbel’s bivariate logistic distribution suffers from the

defect that it lacks a parameter, which limits its usefulness in applications. This can

be corrected in a number of ways, one of which is to define Hθ as

Hθ(x, y) =
(
1 + e−x + e−y + (1− θ)e−x−y

)−1
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for all x, y ∈ R, where θ ∈ [−1, 1]. Show that

(a) the margins are standard logistic distributions;

(b) when θ = 1, we have Gumbel’s bivariate logistic distribution;

(c) when θ = 0, X, Y are independent;

(d) the copula of X, Y is given by

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
.

This is the Ali-Mikhail-Haq family of copulas.

Solution. (a) The margins are standard logistic distribution.

(b) This is obvious.

(c) When θ = 0,

Hθ(x, y) =
(
1 + e−x + e−y + e−x−y

)−1
=
(
(1 + e−x)(1 + e−y)

)−1
.

(d) The reverses are

F−1(u) = − ln(u−1 − 1), G−1(v) = − ln(v−1 − 1).

Then

Cθ(u, v) = Hθ(F
−1(u), G−1(v)) = (u−1 + v−1 − 1 + (1− θ)(u−1 − 1)(v−1 − 1))−1

=
uv

1− θ(1− u)(1− v)
.

Exercise 2.15 Let X1, Y1 be random variables with continuous distribution functions

F1, G1, and copula C. Let F2, G2 be another pair of continuous distribution functions,

and set X2 = F
(−1)
2 (F1(X1)), Y2 = G

(−1)
2 (G1(Y1)). Prove that

(a) the distribution functions of X2, Y2 are F2, G2;

(b) the copula of X2, Y2 is C.

Solution. (a) The CDF of X2 is

P (X2 ≤ x2) = P (F
(−1)
2 (F1(X1)) ≤ x2)
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= P (F1(X1) ≤ F2(x2))

= P (X1 ≤ F
(−1)
1 (F2(x2)))

= F1(F
(−1)
1 (F2(x2))) = F2(x2).

And similar for Y2.

(b) Write

CX2,Y2(F2(x), G2(y)) = P (X2 ≤ x, Y2 ≤ y)

= P (F
(−1)
2 (F1(X1)) ≤ x,G

(−1)
2 (G1(Y1)) ≤ y)

= P (X1 ≤ F
(−1)
1 (F2(x)), Y1 ≤ G

(−1)
1 (G2(y)))

= CX1,Y1(F1[F
(−1)
1 (F2(x))], G1[G

(−1)
1 (G2(y))])

= CX1,Y1(F2(x), G2(y)).

Exercise 2.16 (a) Let X and Y be continuous random variables with copula C

and univariate distribution functions F and G, respectively. The random variables

max(X, Y ) and min(X, Y ) are the order statistics forX, Y . Prove that the distribution

functions of the order statistics are given by

P (max(X, Y ) ≤ t) = C(F (t), G(t))

and

P (min(X, Y ) ≤ t) = F (t)−G(t)− C(F (t), G(t)),

so that when F = G,

P (max(X, Y ) ≤ t) = δC(F (t)), P (min(X, Y ) ≤ t) = 2F (t)− δC(F (t)).

(b) Show that bounds on the distribution functions of the order statistics are given

by

max(F (t) +G(t)− 1, 0) ≤ P (max(X, Y ) ≤ t) ≤ min(F (t), G(t))
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and

max(F (t), G(t)) ≤ P (min(X, Y ) ≤ t) ≤ min(F (t) +G(t), 1).

Solution. (a) One have

P (max(X, Y ) ≤ t) = P (X ≤ t, Y ≤ t) = H(t, t) = C(F (t), G(t)).

And

P (min(X, Y ) ≤ t) = 1− P (min(X, Y ) > t)

= 1− P (X > t, Y > t)

= 1− [1− P (X ≤ t)− P (Y ≤ t) + P (X ≤ t, Y ≤ t)]

= P (X ≤ t) + P (Y ≤ t)− P (X ≤ t, Y ≤ t)

= F (t) +G(t)− C(F (t), G(t)).

(b) We only show the bounds for P (min(X, Y ) ≤ t). Write

F (t) +G(t)−min(F (t), G(t)) ≤ F (t) +G(t)− C(F (t), G(t))

≤ F (t) +G(t)−max(F (t) +G(t)− 1, 0),

which is equal to

max(F (t), G(t)) ≤ F (t) +G(t)− C(F (t), G(t))

≤ min(F (t) +G(t), 1).

Exercise 2.17 [Theorem 2.4.4.] Let X and Y be continuous random variables with

copula CXY . Let α, β be strictly monotone on ranX and ranY , respectively.

(1) If α is strictly increasing and β is strictly decreasing, then

Cα(X)β(Y )(u, v) = u− CXY (u, 1− v).
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(2) If α is strictly decreasing and β is strictly increasing, then

Cα(X)β(Y )(u, v) = v − CXY (1− u, v).

(3) If α and β are both strictly decreasing, then

Cα(X)β(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v).

Proof. (1) Write, for any x, y ∈ R,

Cα(X)β(Y )(Fα(X)(x), Gβ(Y )(y)) = P (α(X) ≤ x, β(Y ) ≤ y)

= P (X ≤ α−1(x), Y > β−1(y))

= P (X ≤ α−1(x))− P (X ≤ α−1(x), Y ≤ β−1(y))

= FX(α
−1(x))− CXY (FX(α

−1(x)), GY (β
−1(y)))

= Fα(X)(x)− CXY (Fα(X)(x), 1−Gβ(Y )(y)).

(2) Similarly, this part is obvious.

(3) Write

Cα(X)β(Y )(Fα(X)(x), Gβ(Y )(y)) = P (α(X) ≤ x, β(Y ) ≤ y)

= P (X > α−1(x), Y > β−1(y))

= P (X > α−1(x))− P (X > α−1(x), Y ≤ β−1(y))

= P (X > α−1(x))− P (Y ≤ β−1(y)) + P (X ≤ α−1(x), Y ≤ β−1(y))

= Fα(X)(x) +Gβ(Y )(y)− 1 + CXY (FX(α
−1(x)), GY (β

−1(y)))

= Fα(X)(x) +Gβ(Y )(y)− 1 + CXY (1− Fα(X)(x), 1−Gβ(Y )(y)).

Exercise 2.18 Let S be a subset of R2
. Then S is non-increasing if and only if for

each (x, y) in R2
, either

(1) for all (u, v) in S, u ≤ x implies v > y; or
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(2) for all (u, v) in S, v > y implies u ≤ x.

Solution. “⇒”: Assume S is non-increasing and neither (1) nor (2) holds. Then

there exists points (a, b), (c, d) in S such that a ≤ x, b ≤ y and d > y, c > x. Hence

a ≤ c and b ≤ d, contradict the non-increasingness.

“⇐”: Assume that S is not non-increasing. Then there exists points (a, b), (c, d)

in S with a ≤ c and b ≥ d. For (x, y) = ((a + c)/2, (b + d)/2), neither (1) nor (2)

holds.

Exercise 2.19 Let X, Y be random variables whose joint distribution function H

is equal to its Fréchet-Hoeffding lower bound. Then for every (x, y) ∈ R2
, either

P (X > x, Y > y) = 0 or P (X ≤ x, Y ≤ y) = 0.

Solution. Since

P (X > x, Y > y) = 1− F (x)−G(y) +H(x, y), P (X ≤ x, Y ≤ y) = H(x, y),

H(x, y) = max(F (x) + G(y) − 1, 0) if and only if either P (X > x, Y > y) = 0 or

P (X ≤ x, Y ≤ y) = 0. Since if P (X ≤ x, Y ≤ y) = 0, F (x) + G(y) − 1 < 0 and

H(x, y) = 0.

Exercise 2.20 [Theorem 2.5.5]

Solution. Let S denote the support of H, and let (x, y) be any point in R2
. Then

(1) holds in Exercise 2.18 if and only if

{(u, v) : u ≤ x, v ≤ y} ∩ S = ∅.

That is P (X ≤ x, Y ≤ y) = 0. By Exercise 2.19, the proof is completed.

Exercise 2.21 Let X, Y be non-negative random variables whose survival function

is H(x, y) = (ex + ey − 1)−1 for x, y ≥ 0.

(a) Show that X, Y are standard exponential random variables.
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(b) Show that the copula of X, Y is the copula given by

C(u, v) =
uv

u+ v + uv
.

Solution. (a) The univariate survival margins are

F (x) = H(x,−∞) = (ex − 1)−1, G(y) = H(−∞, y) = (ey − 1)−1.

(b) The inverse functions are

F
(−1)

(u) = ln(u−1 + 1), G
(−1)

(v) = ln(v−1 + 1).

Then

Ĉ(u, v) = H(F
(−1)

(u), G
(−1)

(v)) =
uv

u+ v + uv
.

Exercise 2.22 Let X, Y be continuous random variables whose joint distribution

function is given by C(F (x), G(y)), where C is the copula of X, Y , and F,G are the

distribution functions of X, Y respectively. Verify

P (X ≤ x ∪ Y ≤ y) = C̃(F (x), G(y)), P (X > x ∪ Y > y) = C∗(F (x), G(y)).

Solution. We have

P (X ≤ x ∪ Y ≤ y) = P (X ≤ x) + P (Y ≤ y)− P (X ≤ x, Y ≤ y)

= F (x) +G(y)− C(F (x), G(y))

= C̃(F (x), G(y)).

And

P (X > x ∪ Y > y) = 1− P (X ≤ x, Y ≤ y)

= 1− C(F (x), G(y))

= C∗(F (x), G(y)).
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Exercise 2.23 Let X1, Y1, F1, G1, F2, G2 and C be as usual. Set X2 = F
(−1)
2 (1 −

F1(X1)) and Y2 = G
(−1)
2 (1−G1(Y1)). Prove that

(a) The distribution functions of X2, Y2 are F2, G2, and

(b) The copula of X2, Y2 is Ĉ.

Solution. (a) The distribution function of X2 is

P (X2 ≤ x) = P (F
(−1)
2 (1− F1(X1)) ≤ x)

= P ((1− F1(X1)) ≤ F2(x))

= P (1− F2(x) ≤ F1(X1))

= 1− P (F1(X1) ≤ 1− F2(x))

= 1− P (X1 ≤ F
(−1)
1 (1− F2(x)))

= 1− F1[F
(−1)
1 (1− F2(x))] = F2(x).

Similarly for G2.

(b) Write

P (X2 ≤ x, Y2 ≤ y) = P (F
(−1)
2 (1− F1(X1)) ≤ x,G

(−1)
2 (1−G1(Y1)) ≤ y)

= P ((1− F1(X1)) ≤ F2(x), (1−G1(Y1)) ≤ G2(y))

= P ((1− F2(x)) ≤ F1(X1), (1−G2(y)) ≤ G1(Y1))

= 1− [1− F2(x) + 1−G2(y)− P (F1(X1) ≤ 1− F2(x), G1(Y1) ≤ 1−G2(y))]

= F2(x) +G2(y)− 1 + C(F1(F
(−1)
1 (1− F2(x))), G1(G

(−1)
1 (1−G2(y))))

= F2(x) +G2(y)− 1 + C(1− F2(x), 1−G2(y))

= Ĉ(F2(x), G2(y)).

Exercise 2.24 LetX, Y be continuous random variables with copula C and a common

univariate distribution function F . Show that the distribution and survival functions

of the order statistics are given by
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where δ, δ̂, δ̃ and δ∗ denote the diagonal sections of C, Ĉ, C̃, C∗, respectively.

Solution. Write

P (max(X, Y ) ≤ t) = P (X ≤ t, Y ≤ t)

= C(F (t), F (t)) = δ(F (t)).

And

P (max(X, Y ) > t) = 1− C(F (t), F (t)) = δ∗(F (t)).

Further,

P (min(X, Y ) ≤ t) = 1− P (min(X, Y ) > t)

= 1− P (X > t, Y > t)

= P (X ≤ t) + P (Y ≤ t)− P (X ≤ t, Y ≤ t)

= F (t) + F (t)− C(F (t), F (t))

= δ̃(F (t)).

And

P (min(X, Y ) > t) = 1− F (t)− F (t) + C(F (t), F (t))

= δ̂(F (t)).

Exercise 2.25 Show that under composition, the set of operations of forming the

survival copula, the dual of a copula, and the co-copula of a given copula. along with

the identity yields the dihedral group:
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Solution. Clearly,

∧(∧(C(u, v))) = ∧(u+ v − 1 + C(1− u, 1− v))

= u+ v − 1 + (1− u) + (1− v)− 1 + C(u, v) = C(u, v).

And

∼ (∼ (C(u, v))) =∼ (u+ v − C(u, v))

= u+ v − u− v + C(u, v) = C(u, v).

And

∧(∼ (C(u, v))) = ∧(u+ v − C(u, v))

= u+ v − u− v + 1− C(1− u, 1− v) = C∗(u, v).

Others are similar.

Exercise 2.26 Prove for any (u, v) ∈ I2,

Ĉ(u, v) = H(F
(−1)

(u), G
(−1)

(v)).

Solution. One has

H(F
(−1)

(u), G
(−1)

(v)) = P (X > F
(−1)

(u), Y > G
(−1)

(v))

= 1− F (F
(−1)

(u))−G(G
(−1)

(v)) +H(F
(−1)

(u), G
(−1)

(v))

= u+ v − 1 + C(F (F
(−1)

(u))), G(G
(−1)

(v)))

= u+ v − 1 + C(1− u, 1− v) = Ĉ(u, v).
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Exercise 2.27 Let X, Y be continuous random variables symmetric about a and b

with marginal distribution function F,G, and with copula C. Is (X, Y ) is radially

symmetric (or jointly symmetric) about (a, b) if C is

(a) a member of the Fréchet family in Exercise 2.4?

(b) a member of the Cuadras-Augé family in Exercise 2.5?

Solution. (a) The Fréchet family is

Cα,β(u, v) = αM(u, v) + (1− α− β)Π(u, v) + βW (u, v).

Then

Ĉα,β(u, v) = u+ v − 1 + Cα,β(1− u, 1− v)

= u+ v − 1 + αmin(1− u, 1− v) + (1− α− β)(1− u)(1− v)

+ βmax(1− u+ 1− v + 1, 0)

= α[min(1− u, 1− v)− 1 + u+ v] + (1− α− β)uv

+ β[max(1− u− v, 0)− 1 + u+ v]

= Cα,β(u, v).

(b) The Cuadras-Augé family is

Cθ(u, v) = [min(u, v)]θ[uv]1−θ =

uv1−θ, u ≤ v,

u1−θv, u ≥ v.

Then when u ≤ v,

Ĉθ(u, v) = u+ v − 1 + (1− u)(1− v)1−θ.

And similarly for u ≥ v. Clearly, Ĉ0(u, v) = C0(u, v). And Ĉ1(u, v) = C1(u, v).

Exercise 2.28 Suppose X, Y are identically distributed continuous random variables,

each symmetric about a. Show that “exchangeability” does not imply “radial sym-

metry”, nor does “radial symmetry” imply “exchangeability”.
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Solution. Suppose that X, Y are exchangeable, then

C(u, v) = C(v, u).

Thus

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v)

= u+ v − 1 + C(1− v, 1− u) ̸= C(u, v).

Conversely, assume “radial symmetry”, then

Ĉ(u, v) = C(u, v).

Thus

C(v, u) = v + u− 1 + C(1− v, 1− u) ̸= u+ v − 1 + C(1− u, 1− v) = C(u, v).

Exercise 2.29 Let X, Y be continuous random variables with joint distribution func-

tionH and margins F,G. Let (a, b) be a point in R2. Then (X, Y ) is jointly symmetric

about (a, b) if and only if

H(a+x, b+y) = F (a+x)−H(a+x, b−y), H(a+x, b+y) = G(b+y)−H(a−x, b+y)

for all (x, y) ∈ R2
.

Solution. According to the definition,

P (X − a ≤ x, Y − b ≤ y) = P (X − a ≤ x, b− Y ≤ y)

= P (X ≤ a+ x)− P (X ≤ a+ x, Y ≤ b− y)

= F (x+ a)−H(a+ x, b− y). (1.0.1)

Similarly,

P (X−a ≤ x, Y−b ≤ y) = P (a−X ≤ x, Y−b ≤ y) = G(b+y)−H(a−x, b+y). (1.0.2)
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Let y = ∞, (1.0.1) and (1.0.2) imply that (X, Y ) is marginally symmetric about (a, b),

G(b+ y) = G(b− y), F (a+ x) = F (a− x).

Then

G(b+ y)−H(a+ x, b+ y) = G(b− y)− P (X ≤ a+ x, Y > b− y),

which implies

P (X > a+ x, Y > b− y) = P (X > a+ x, Y ≤ b+ y) = P (X ≤ a− x, Y ≤ b+ y).

It follows that (draw a picture)

P (X > a+ x, Y ≤ b+ y) = P (X ≤ a− x, Y > b− y).

It ends the proof.

Exercise 2.30 Let X, Y be continuous random variables with joint distribution func-

tion H and margins F,G and copula C. Further suppose that X, Y are symmetric

about a and b. Then (X, Y ) is jointly symmetric about (a, b) if and only if C satisfies

C(u, v) = u− C(u, 1− v), C(u, v) = v − C(1− u, v)

for all (u, v) ∈ I2.

Solution. Write

H(a+ x, b+ y) = F (x+ a)−H(a+ x, b− y)

⇔ C(F (a+ x), G(b+ y)) = F (x+ a)− C(F (a+ x), G(b− y))

⇔ C(F (a+ x), G(b+ y)) = F (x+ a)− C(F (a+ x), G(b+ y))

⇔ C(u, v) = u− C(u, 1− v).

Similar for the other equation.

Exercise 2.31 (a) Show that C1 ≺ C2 if and only if C1 ≺ C2.

(b) Show that C1 ≺ C2 if and only if Ĉ1 ≺ Ĉ2.
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Solution. (a) We have for all (u, v) ∈ I2,

C1 ≺ C2 ⇔ C1(u, v) ≤ C2(u, v)

⇔ 1− u− v + C1(u, v) ≤ 1− u− v + C2(u, v)

⇔ C1 ≤ C2

(b) Similarly, for all (u, v) ∈ I2,

C1 ≺ C2 ⇔ C1(u, v) ≤ C2(u, v)

⇔ C1(1− u, 1− v) ≤ C2(1− u, 1− v)

⇔ u+ v − 1 + C1(u, v) ≤ u+ v − 1 + C2(u, v)

⇔ Ĉ1 ≤ Ĉ2

Exercise 2.32 Show that Ali-Mikhail-Haq family of copulas from Exercise 2.14 is

positively ordered.

Solution. The copula of X, Y is given by

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
,

where θ ∈ [−1, 1]. For 0 ≤ α ≤ β ≤ 1 and u, v ∈ (0, 1),

Cα(u, v)

Cβ(u, v)
=

1− β(1− u)(1− v)

1− α(1− u)(1− v)
≤ 1,

thus Cα(u, v) ≤ Cβ(u, v).

Exercise 2.33 Show that the Mardia family from Exercise 2.4 is neither positively

nor negatively ordered.

Solution. Let θ be in [−1, 1] and set

Cθ(u, v) =
θ2(1 + θ)

2
M(u, v) + (1− θ2)Π(u, v) +

θ2(1− θ)

2
W (u, v).
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Note that, let (u, v) = (3/4, 1/4),

C0(3/4, 1/4) =
3

16
=

96

512
, C1/4(3/4, 1/4) =

95

512
, C1/2(3/4, 1/4) =

96

512
.

Exercise 2.34 (a) Show that the (n− 1)-margins of an n-copula are (n− 1)-copulas.

(b) Show that if C is an n-copula, n ≥ 3, then for any k, 2 ≤ k < n, all
(
n
k

)
k-margins of C are k-copulas.

Solution. (a) The groundedness and uniform margins are directly from the prop-

erty of this n-copula. Further, evaluate the Cn-volume of box

[a1, b1]× · · · × [ak−1, bk−1]× [0, 1]× [ak+1, bk+1]× · · · × [an, bn].

Clearly, it is greater than 0, thus the Cn−1-volume of

[a1, b1]× · · · × [ak−1, bk−1]× [ak+1, bk+1]× · · · × [an, bn]

is also greater than 0.

(b) This is similar to part (a).

Exercise 2.35 Let Mn and Πn be multivariate copula, and let [a, b] be an n-box in

In. Prove that

VMn([a, b]) = max(min(b1, b2, . . . , bn)−max(a1, a2, . . . , an), 0)

and

VΠn([a, b]) = (b1 − a1)(b2 − a2) · · · (bn − an),

and hence conclude that Mn and Πn are n-copulas for all n ≥ 2.

Solution. We only prove for Mn, for bivariate M , if a1 ≤ a2,

VM([a, b]) = min(b1, b2)−min(b1, a2) ≥ 0.

If a1 > a2,

VM([a, b]) = min(b1, b2)−min(a1, b2) ≥ 0.
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That is

VM([a, b]) = max(min(b1, b2)−max(a1, a2), 0).

Then similarly, for Mn,

VMn([a, b]) = max(min(b1, b2, . . . , bn)−max(a1, a2, . . . , an), 0).

Exercise 2.36 Show that

VWn([1/2,1]) = 1− n/2,

where 1 = (1, 1, . . . , 1) and 1/2 = (1/2, 1/2, . . . , 1/2), and hence W n fails to be an

n-copula whenever n > 2.

Solution. We have for all vertices c, that is ci is either 1/2 or 1, for all i = 1, . . . , n,

VWn([1/2,1]) =
∑

(−1){#:ci=1/2}W n(c) = −max(1/2, 0) · n+max(1, 0) = 1− n/2.

Thus W n fails to be an n-copula whenever n > 2.

Exercise 2.37 Let {X1, . . . , Xn} be continuous random variables with copula C and

distribution functions {F1, . . . , Fn}, respectively. Let X(1) and X(n) denote the ex-

treme order statistics for {X1, . . . , Xn}. Prove that the distribution functions F(1), F(n)

of X(1), X(n) satisfy

max(F1(t), . . . , Fn(t)) ≤ F(1)(t) ≤ min

(
n∑

k=1

Fk(t), 1

)

and

max

(
n∑

k=1

Fk(t)− n+ 1, 0

)
≤ F(n)(t) ≤ min(F1(t), F2(t), . . . , Fn(t)).

Solution. Note that,

F(1)(t) = 1− P (X1 > t, . . . , Xn > t)

= (−1)1−1

n∑
i=1

P (Xi ≤ t) + (−1)2−1

n∑
i1 ̸=i2

P (Xi1 ≤ t,Xi2 ≤ t)
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+ · · ·+ (−1)n−1P (X1 ≤ t, . . . , Xn ≤ t),

which implies that

F(1)(t) ≤ min

(
n∑

k=1

Fk(t), 1

)
.

Clearly, for i = 1, . . . , n,

F(1)(t) = 1− P (X1 > t, . . . , Xn > t) ≥ 1− P (Xi > t) =⇒ F(1) ≥ max(F1, . . . , Fn).

Further,

F(n)(t) = P (X1 ≤ t, . . . , Xn ≤ t)

= 1 + (−1)1
n∑

i=1

P (Xi > t) + (−1)2
n∑

i1 ̸=i2

P (Xi1 > t,Xi2 > t)

+ · · ·+ (−1)nP (X1 > t, . . . , Xn > t),

which implies that

F(n)(t) ≥ max

(
1 + (−1)1

n∑
i=1

P (Xi > t), 0

)
= max

(
n∑

k=1

Fk(t)− n+ 1, 0

)
.

Clearly, for i = 1, . . . , n,

F(n)(t) = P (X1 ≤ t, . . . , Xn ≤ t) ≤ P (Xi ≤ t) =⇒ F(n) ≤ min(F1, . . . , Fn).
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Solutions for Chapter 3

Exercise 3.1 Show that when either of the parameters α or β is equal to 0 or 1, the

function

Cα,β = min(u1−αv, uv1−β) =

u1−αv, uα ≥ vβ,

uv1−β, uα ≤ vβ.

is a copula.

Solution. Clearly,

C0,0 = Cα,0 = C0,β = Π, C1,1 = M.

And

Cα,1 = min(u1−αv, u), C1,β = min(v, uv1−β).

The groundedness and uniform margins are obvious. Further, let (u1, v1), (u2, v2) ∈ I2

with u1 ≤ u2, v1 ≤ v2, then

VCα,1([u1, u2]× [v1, v2]) = min(u1−α
1 v1, u1) + min(u1−α

2 v2, u2)

−min(u1−α
2 v1, u2)−min(u1−α

1 v2, u1).

If v2/u
α
1 < 1,

VCα,1([u1, u2]× [v1, v2]) = u1−α
1 v1 + u1−α

2 v2 − u1−α
2 v1 − u1−α

1 v2

= (v2 − v1)(u
1−α
2 − u1−α

1 ) ≥ 0.

If v2/u
α
1 > 1, v1/u

α
1 < 1, v2/u

α
2 < 1,

VCα,1([u1, u2]× [v1, v2]) = u1−α
1 v1 + u1−α

2 v2 − u1−α
2 v1 − u1

≥ u1−α
1 v1 + u1−α

2 v2 − u1−α
2 v1 − u1−α

1 v2

29
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= (v2 − v1)(u
1−α
2 − u1−α

1 ) ≥ 0.

If v2/u
α
1 > 1, v1/u

α
1 < 1, v2/u

α
2 > 1,

VCα,1([u1, u2]× [v1, v2]) = u1−α
1 v1 + u2 − u1−α

2 v1 − u1

= u1(v1/u
α
1 − 1) + u2(1− v1/u

α
2 )

≥ u1(v1/u
α
1 − 1) + u1(1− v1/u

α
2 )

= v1/u
α
1 − v1/u

α
2 ≥ 0.

If v2/u
α
1 > 1, v1/u

α
1 > 1, v2/u

α
2 < 1,

VCα,1([u1, u2]× [v1, v2]) = u1−α
1 v1 + u2 − u2 − u1

≥ u1−α
1 v1 + u2 − u1−α

2 v1 − u1 ≥ 0.

If v2/u
α
1 > 1, v1/u

α
1 > 1, v2/u

α
2 > 1, v1/u

α
2 > 1,

VCα,1([u1, u2]× [v1, v2]) = u1 + u2 − u2 − u1 = 0

If v2/u
α
1 > 1, v1/u

α
1 > 1, v2/u

α
2 > 1, v1/u

α
2 < 1,

VCα,1([u1, u2]× [v1, v2]) = u1 + u2 − u1−α
2 v1 − u1 ≥ 0.

The other C1,β is similar.

Exercise 3.2 Show that a version of the Marshall-Olkin bivariate distribution with

Pareto margins has joint survival functions given by

H(x, y) = (1 + x)−θ1(1 + y)−θ2 [max(1 + x, 1 + y)]−θ12 ,

for x, y ≥ 0, where θ1, θ2, θ12 are positive parameters.

Solution. Note that the Pareto margins are

F (x) =

(1 + x)−θ, x ≥ 0,

1, x < 0.
G(y) =

(1 + y)−θ, y ≥ 0,

1, y < 0.
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Then

H(x, y) = Ĉ(F (x), G(y))

=



(1 + x)−θ(1 + y)−θ min((1 + x)αθ, (1 + y)βθ), x ≥ 0, y ≥ 0,

(1 + x)−θ min((1 + x)αθ, 1), x ≥ 0, y < 0,

(1 + y)−θ min(1, (1 + y)βθ), x < 0, y ≥ 0,

1, x ≥ 0, y ≥ 0,

Therefore, for x, y ≥ 0,

H(x, y) = (1 + x)−θ(1 + y)−θ min((1 + x)αθ, (1 + y)βθ),

= (1 + x)−θ+αθ(1 + y)−θ

[
min

(
1,

(1 + y)β

(1 + x)α

)]θ
,

= (1 + x)−θ+αθ(1 + y)−θ

[
max

(
1,

(1 + x)α

(1 + y)β

)]−θ

,

= (1 + x)−θ+αθ(1 + y)−θ−β
[
max

(
(1 + y)β, (1 + x)α

)]−θ
,

= (1 + x)−θ1(1 + y)−θ2 [max(1 + x, 1 + y)]−θ12 .

Exercise 3.3 Prove the following generalization of the Marshall-Olkin family of cop-

ulas: Suppose that a, b are increasing functions defined on I such that a(0) = b(0) = 0

and a(1) = b(1) = 1. Further suppose that the functions u 7→ a(u)/u and v 7→ b(v)/v

are both increasing on (0, 1]. Then the function C defined on I2 by

C(u, v) = min(va(u), ub(v))

is a copula. a(u) = u1−α, b(v) = v1−β is a special case.

Solution. The groundness and uniform margins are obvious. Let (u1, v1), (u2, v2) ∈

I2 with u1 ≤ u2, v1 ≤ v2, then

α = min(v1a(u1), u1b(v1))+min(v2a(u2), u2b(v2))−min(v1a(u2), u2b(v1))−min(v2a(u1), u1b(v2)).
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If a(u1)/u1 ≤ b(v1)/v1, a(u2)/u2 > b(v1)/v1, a(u2)/u2 ≤ b(v2)/v2,

α = v1a(u1) + v2a(u2)− u2b(v1)− v2a(u1)

≥ v1a(u1) + v2a(u2)− v1a(u2)− v2a(u1)

= (v2 − v1)(a(u2)− a(u1)) ≥ 0.

Other circumstance are similar.

Exercise 3.4 (a) Show that the following algorithm generates random variates (x, y)

from Marshall-Olkin bivariate-exponential distribution with parameters λ1, λ2, λ12:

1. Generate three independent uniform (0, 1) variates r, s, t;

2. Set x = min
(

− ln r
λ1

, − ln t
λ12

)
, y = min

(
− ln s
λ2

, − ln t
λ12

)
;

3. The desired pair is (x, y).

(b) Show that u = exp(−(λ1+λ12)x) and v = exp(−(λ2+λ12)y) are uniform (0, 1)

variates whose joint distribution function is a Marshall-Olkin copula.

Solution. (a) We have

P

(
min

(
− ln r

λ1

,
− ln t

λ12

)
> x,min

(
− ln s

λ2

,
− ln t

λ12

)
> y

)
= P

(
− ln r

λ1

> x,
− ln t

λ12

> x,
− ln s

λ2

> y,
− ln t

λ12

> y

)
= P (r < exp(−λ1x), s < exp(−λ2y), t < exp(−λ12max(x, y)))

= exp(−λ1x) exp(−λ2y) exp(−λ12max(x, y)),

which is the Marshall-Olkin bivariate-exponential distribution.

(b) The quasi-inverses are

x =
− lnu

λ1 + λ12

, y =
− ln v

λ2 + λ12

.

Then

Ĉ(u, v) = exp

(
−(λ1 + λ12)

− lnu

λ1 + λ12

)
exp

(
−(λ2 + λ12)

− ln v

λ2 + λ12

)
·min

{
exp

(
λ12

− lnu

λ1 + λ12

)
, exp

(
λ12

− ln v

λ2 + λ12

)}
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= uvmin(u−α, v−β),

where α = λ12/(λ1 + λ12), β = λ12/(λ2 + λ12).

Exercise 3.5 Let (X, Y ) be random variables with circular uniform distribution.

Find the distribution of max(X, Y ).

Solution. The distribution function of max(X, Y ) is

P (max(X, Y ) ≤ t) = H(t, t) =



3/4, x2 + y2 ≤ 1,

1, x2 + y2 > 1, x, y ≥ 0,

1− arccos t
π

, x2 + y2 > 1,min(x, y) < 0 ≤ max(x, y),

0, x2 + y2 > 1, x, y < 0.

Exercise 3.6 Let Z1, Z2, Z3 be three mutually independent exponential random vari-

ables with parameter λ > 0, and let J be a Bernoulli random variable, independent

with Z’s, with parameter θ in (0, 1). Set

X = (1− θ)Z1 + JZ3, Y = (1− θ)Z2 + JZ3.

Show that

(a) for x, y ≥ 0, the joint survival function of X and Y is given by

H(x, y) = exp[−λ(x ∨ y)] +
1− θ

1 + θ
exp

[
−λ(x+ y)

1− θ

](
1− exp

[
λ
1 + θ

1− θ
(x ∨ y)

])
.

(b) X, Y are exponential with parameter λ;

(c) the survival copula of X, Y is given by

Ĉθ(u, v) = M(u, v) +
1− θ

1 + θ
(uv)1/(1−θ)

(
1− [max(u, v)]−(1+θ)/(1−θ)

)
.

(d) Ĉθ is absolutely continuous, Ĉ0 = Π, Ĉ1 = M .

Solution. (a)

(b)

Exercise 3.7
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Solution.

Exercise 3.35 For Plackett family of copulas, show that

(a) C0(u, v) = lim
θ→0+

Cθ(u, v) =
(u+v−1)+|u+v−1|

2
= W (u, v),

(b) C∞(u, v) = lim
θ→∞

C∞(u, v) = (u+v)−|u−v|
2

= M(u, v).

Solution. (a) We have

lim
θ→0

[1 + (θ − 1)(u+ v)]−
√

[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)

2(θ − 1)

=
1− (u+ v)− |1− (u+ v)|

−2

=
(u+ v − 1) + |u+ v − 1|

2
= W (u, v).

(b)

lim
θ→∞

[1 + (θ − 1)(u+ v)]−
√

[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)

2(θ − 1)

= lim
θ→∞

[1/(θ − 1) + (u+ v)]−
√

[1/(θ − 1) + (u+ v)]2 − 4uvθ/(θ − 1)

2

=
(u+ v)− |u− v|

2
= M(u, v).

Exercise 3.36 Let Cθ be a member of the Plackett family of copulas, where θ is in

(0,∞).

(a) Show that C1/θ(u, v) = u− Cθ(u, 1− v) = v − Cθ(1− u, v).

(b) Conclude that Cθ satisfies the functional equation C = Ĉ for radial symmetry.

Solution. (a) Write

C1/θ(u, v)

=
[1 + (1/θ − 1)(u+ v)]−

√
[1 + (1/θ − 1)(u+ v)]2 − 4uv1/θ(1/θ − 1)

2(1/θ − 1)

=
[θ + (1− θ)(u+ v)]−

√
[θ + (1− θ)(u+ v)]2 − 4uv(1− θ)

2(1− θ)
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=
2u(1− θ) + 1− (1− θ)(u+ 1− v)

2(1− θ)

+

√
[2u(1− θ) + 1− (1− θ)(u+ 1− v)]2 − 4uv(1− θ)

2(1− θ)

=
2u(1− θ) + 1− (1− θ)(u+ 1− v)

2(1− θ)

+

√
[1 + (θ − 1)(u+ 1− v)]2 + 4u2(1− θ)2 + 4u(1− θ)[1 + (θ − 1)(u+ 1− v)]− 4uv(1− θ)

2(1− θ)

= u−
[1 + (θ − 1)(u+ 1− v)]−

√
[1 + (θ − 1)(u+ 1− v)]2 − 4u(1− v)θ(θ − 1)

2(θ − 1)
.

Also fit for θ = 1.

(b) Plackett family is radially symmetric,

C(u, v)

=
[1 + (θ − 1)(u+ v)]−

√
[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)

2(θ − 1)

=
2(θ − 1)(u+ v − 1) + [1 + (θ − 1)(2− u− v)]

2(θ − 1)

−
√
[2(θ − 1)(u+ v − 1) + 1 + (θ − 1)(2− u− v)]2 − 4uvθ(θ − 1)

2(θ − 1)

= u+ v − 1 +
[1 + (θ − 1)(2− u− v)]−

√
[1 + (θ − 1)(2− u− v)]2 − 4(1− u)(1− v)θ(θ − 1)

2(θ − 1)

= u+ v − 1 + C(1− u, 1− v) = Ĉ(u, v).

Also fit for θ = 1.

Exercise 3.37 Show that the Plackett family is positively ordered.

Solution. Let 0 < θ1 ≤ θ2 < 1,

Cθ =
[1 + (θ − 1)(u+ v)]−

√
[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)

2(θ − 1)
,

then the derivative is

∂Cθ

∂θ
=

{(u+ v)− 1/2A−1/2(2(u+ v)[1 + (θ − 1)(u+ v)]− 4uv(2θ − 1))}2(θ − 1)

[2(θ − 1)]2
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−
2{[1 + (θ − 1)(u+ v)]−

√
[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)}
[2(θ − 1)]2

≥ 0.

Exercise 3.38 Show that the following algorithm generates random variates (u, v)

from Plackett distribution with parameter θ:

1. Generate two independent uniform (0, 1) variates u, t;

2. Set a = t(1 − t); b = θ + a(θ − 1)2; c = 2a(uθ2 + 1 − u) + θ(1 − 2a); and

d =
√
θ ·
√

θ + 4au(1− u)(1− θ)2;

3. Set v = [c− (1− 2t)d]/2b;

4. The desired pair is (u, v).

Solution. We only need to show that

[c− (1− 2t)d]/2b = c(−1)
u (t),

where cu(t) = P (V ≤ t|U = u) = ∂C(u,v)
∂u

. That is

∂C(u, v)

∂u
=

1

2
− 1√

[1 + (θ − 1)(u+ v)]2 − 4uvθ(θ − 1)
· [1 + (θ − 1)(u+ v)− 2vθ],

The associated quasi-inverse is

c(−1)
u (v) =

Exercise 3.39

Solution.

Exercise 3.40 Let Cθ denote a member of the Ali-Mikhail-Haq family. Show that

Cθ(u, v) = uv

∞∑
k=0

[θ(1− u)(1− v)]k

and hence

Solution.
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Exercise 3.41 (a) Show that the harmonic mean of two Ali-Mikhail-Haq copulas is

again an Ali-Mikhail-Haq copula.

(b) Show that each Ali-Mikhail-Haq copula is a weighted harmonic mean of the

two extreme members of the family, i.e., for all θ ∈ [−1, 1],

Cθ(u, v) =
1

1−θ
2

· 1
C−1(u,v)

+ 1+θ
2

· 1
C+1(u,v)

.

Solution. (a) Let Cα, Cβ be Ali-Mikhail-Haq copulas, then

2
1

Cα(u,v)
+ 1

Cβ(u,v)

=
2uv

1− α(1− u)(1− v) + 1− β(1− u)(1− v)

=
2uv

2− (α + β)(1− u)(1− v)
= C(α+β)/2.

(b) Write

1
1−θ
2

· 1
C−1(u,v)

+ 1+θ
2

· 1
C+1(u,v)

=
2uv

(1− θ)[1 + (1− u)(1− v)] + (1 + θ)[1− (1− u)(1− v)]

=
uv

1− θ(1− u)(1− v)
= Cθ(u, v).

Exercise 3.42 Show that the following algorithm generates random variates (u, v)

from an Ali-Mikhail-Haq distribution with parameter θ:

1. Generate two independent uniform (0, 1) variates u, t;

2. Set a = 1−u; b = −θ(2at+1)+2θ2a2t+1; and c = θ2(4a2t−4at+1)− θ(4at−

4t+ 2) + 1;

3. Set v = 2t(aθ − 1)2/(b+
√
c);

4. The desired pair is (u, v).

Solution. Recall that Ali-Mikhail-Haq copula is

Cθ(u, v) =
uv

1− θ(1− u)(1− v)
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for θ ∈ [−1, 1]. Thus

cu(v) =
v − vθ + v2θ

(1− θ(1− u)(1− v))2
.

The associated quasi-inverse is

c(−1)
u (v) =
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Solutions for Chapter 4

Exercise 4.1 [Theorem 4.1.5] Let C be an Archimedean copula with generator φ.

Then:

1. C is symmetric; i.e. C(u, v) = C(v, u) for all u, v ∈ I;

2. C is associative; i.e., C(C(u, v), w) = C(u,C(v, w)) for all u, v, w ∈ I;

3. If c > 0 is any constant, then cφ is also a generator of C.

Solution. 1. Since

C(u, v) = φ[−1](φ(u) + φ(v)) = φ[−1](φ(v) + φ(u)) = C(v, u).

2. Write

C(C(u, v), w) = φ[−1](φ[C(u, v)] + φ(w))

= φ[−1](φ[φ[−1](φ(u) + φ(v))] + φ(w))

= φ[−1](φ(u) + φ(v) + φ(w))

= φ[−1](φ(u) + φ[φ[−1](φ(v) + φ(w))])

= C(u,C(v, w)).

If φ(u) + φ(v) ≥ φ(0) or φ(v) + φ(w) ≥ φ(0), C(C(u, v), w) = C(u,C(v, w)) = 0.

3. Write

cφ[−1](cφ(u) + cφ(v)) = cφ[−1][c(φ(u) + φ(v))]

= φ[−1]

[
1

c
· c(φ(u) + φ(v))

]
= φ[−1](φ(u) + φ(v)).

39
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If φ(u) + φ(v) ≥ φ(0), then c(φ(u) + φ(v)) ≥ cφ(0), it implies that cφ[−1][c(φ(u) +

φ(v))] = 0 = C(u, v).

Exercise 4.2 The diagonal section of an Archimedean copula C with generator ϕ

in Ω is given by δC(u) = φ[−1][2φ(u)]. Prove that if C is Archimedean, then for

u ∈ (0, 1), δC(u) < u. Conclude that M is not Archimedean copula.

Solution. If 2φ(u) ≥ φ(0), then δC(u) = 0 < u. If 2φ(u) < φ(0), since φ[−1] is

decreasing, δC(u) = φ[−1][2φ(u)] < φ[−1][φ(u)] = u. The diagonal section of M is

δM(u) = min(u, u) = u,

thus M is not Archimedean.

Exercise 4.3 Show that φ : I → [0,∞] is in Ω iff 1−φ[−1](t) is a unimodal distribution

function on [0,∞] with mode at zero.

Solution. The corresponding density function is

d(1− φ[−1](t))

dt
= − 1

φ′(φ[−1](t))
. (3.0.3)

This distribution is unimodal at zero iff the density function is decreasing on [0,∞]

and
d(−1/φ′(φ[−1](t)))

dt
=

φ′′(φ[−1](t))

φ′(φ[−1](t))
< 0.

Sine φ′(φ[−1](t)) < 0 by (3.0.3), φ′′(φ[−1](t)) > 0. Thus φ is convex. And we need

φ′(φ[−1](t)) is a decreasing function of t. Thus it is iff φ is strictly decreasing and

convex with φ(1) = 0. Since if φ(1) = a > 0, 1−φ[−1](0) < 1−φ[−1](a) = 0, which is

impossible.

Exercise 4.4 Show that non-Archimedean copulas can have

(a) non-convex level curves;

(b) convex level curves.

Solution.

Exercise 4.5 Let C be an Archimedean copula. Prove that C is strict if and only if

C(u, v) > 0 for (u, v) ∈ (0, 1]2.
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Solution. We need to prove that φ(0) = ∞ iff C(u, v) > 0 for (u, v) ∈ (0, 1]2. That

is, for all (u, v) ∈ (0, 1]2,

φ[−1](φ(u) + φ(v)) > 0 ⇔ 0 ≤ φ(u) + φ(v) < φ(0)

⇔ φ(0) = ∞.

Exercise 4.6 This exercise shows that different Archimedean copulas can have the

same zero set. Let

Solution.

Exercise 4.7

Solution.

Exercise 4.8

Solution.

Exercise 4.9

Solution.

Exercise 4.10

Solution.

Exercise 4.11

Solution.

Exercise 4.12

Solution.

Exercise 4.13

Solution.

Exercise 4.14

Solution.

Exercise 4.15

Solution.

Exercise 4.16

Solution.
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Exercise 4.17 Show that the following algorithm generates random variates (u, v)

whose joint distribution function is the Clayton copula with parameter θ > 0:

1.

2.

3.

Solution.

Exercise 4.18

Solution.

Exercise 4.19

Solution.

Exercise 4.20

Solution.

Exercise 4.21

Solution.

Exercise 4.22

Solution.

Exercise 4.23

Solution.

Exercise 4.24

Solution.

Exercise 4.25

Solution.
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Solutions for Chapter 5

Exercise 5.1 [Corollary 5.1.2.] 1. Q is symmetric in its arguments: Q(C1, C2) =

Q(C2, C1).

2. Q is non-decreasing in each argument: if C1 ≺ C ′
1 and C2 ≺ C ′

2 for all (u, v) ∈ I2,

then Q(C1, C2) ≤ Q(C ′
1, C

′
2).

3. Copulas can be replaced by survival copulas in Q, i.e., Q(C1, C2) = Q(Ĉ1, Ĉ2).

Solution. 1. We have

Q(C1, C2) = 4

∫∫
I2
C2(u, v)dC1(u, v)− 1

= 2P ((X1 −X2)(Y1 − Y2) > 0)− 1

= 2 [P (X1 < X2, Y1 < Y2) + P (X1 > X2, Y1 > Y2)]− 1

= 2

[∫∫
R2

P (X1 < x, Y1 < y)dC2(F (x), G(y))

+

∫∫
R2

P (X1 > x, Y1 > y)dC2(F (x), G(y))

]
− 1

= 2

[∫∫
R2

P (X1 < x, Y1 < y)dC2(F (x), G(y))

+

∫∫
R2

{1− F (x)−G(y) + P (X1 < x, Y1 < y)}dC2(F (x), G(y))

]
− 1

= 4

∫∫
I2
C1(u, v)dC2(u, v)− 1

= Q(C2, C1).

2. This is trivial by the definition.

3. For any H, it is true that∫∫
H(x, y)dH(x, y) =

∫∫
H(x, y)dH(x, y) =

∫∫
H(x, y)dH(x, y).
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Exercise 5.2 Let X, Y be r.v.’s with the Marshall-Olkin bivariate exponential distri-

bution with parameters λ1, λ2, λ12, that is, the survival function is given by

H(x, y) = exp(−λ1x− λ2y − λ12max(x, y)).

(a) Show that the ordinary Pearson product-moment correlation coefficient ofX, Y

is given by
λ12

λ1 + λ2 + λ12

.

(b) Show that Kendall’s tau and Pearson’s product-moment correlation coefficient

are numerically equal for members of this family.

Solution. (a) In Marshall’s paper, these moments were calculated using MGF.

(b) From Example 5.5.,

τα,β =
αβ

α− αβ + β

=
λ12

λ1+λ12
· λ12

λ2+λ12

λ12

λ1+λ12
− λ2

12

(λ1+λ12)(λ2+λ12)
+ λ12

λ2+λ12

=
λ2
12

λ12(λ2 + λ12)− λ2
12 + λ12(λ1 + λ12)

=
λ12

λ1 + λ2 + λ12

.

Exercise 5.3 Prove that an alternate expression for Kendall’s tau for an Archimedean

copula C with generator φ is

τC = 1− 4

∫ ∞

0

u

[
d

du
φ[−1](u)

]2
du.

Solution. For Archimedean copula C,

τC = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt.
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Then let φ(t) = u, one has dφ[−1](u)/du = 1/φ′(t) if u ≤ φ(0), if u ≥ φ(0),

dφ[−1](u)/du = 0. Thus

τC = 1 + 4

∫ 0

φ(0)

u
d

du
φ[−1](u)dφ[−1](u)

= 1− 4

∫ φ(0)

0

u

[
d

du
φ[−1](u)

]2
du

= 1− 4

∫ ∞

0

u

[
d

du
φ[−1](u)

]2
du.

Exercise 5.4 (a) Let Cθ, θ ∈ [0, 1] be a member of

(b)

Solution.

Exercise 5.5 Let C be a diagonal copula, that is, C(u, v) = min(u, v, (1/2)[δ(u) +

δ(v)]).

(a) Show the Kendall’s tau is given by

τC = 4

∫ 1

0

δ(t)dt− 1.

(b) For diagonal

Solution. (a) Write

C(u, u) = min(u, δ(u)) = δ(u),

since

Exercise 5.6

Solution.

Exercise 5.7

Solution.

Exercise 5.8 Let Cθ be a member of the Plackett family

a
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for θ > 0. Show that Spearman’s rho for this Cθ is

ρθ =
θ + 1

θ − 1
− 2θ

(θ − 1)2
ln θ.

There does not appear to be a closed form expression for Kendall’s τ for members of

this family.

Solution.

Exercise 5.9 Let Cθ, θ ∈ R be a member of the Frank family. Show that

τθ = 1− 4

θ
[1−D1(θ)], ρθ = 1− 12

θ
[D1(θ)−D2(θ)],

where Dk(x) is the Debye function, which is defined for any positive integer k by

Dk(x) =
k

xk

∫ x

0

tk

et − 1
dt.

Solution.

Exercise 5.10

Solution.

Exercise 5.11

Solution.

Exercise 5.12

Solution.

Exercise 5.13

Solution.

Exercise 5.14

Solution.

Exercise 5.15

Solution.

Exercise 5.16 Let X, Y be continuous random variables with copula C. Show that

an alternate expression for Spearman’s rho for X, Y is

ρ = 3

∫∫
I2

(
[u+ v − 1]2 − [u− v]2

)
dC(u, v).
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Solution. Write

ρ = 3

∫∫
I2

(
[u+ v − 1]2 − [u− v]2

)
dC(u, v)

= 3

∫∫
I2

(
(v − 1)2 + 2uv − 2u− v2 + 2uv

)
dC(u, v)

= 3

∫∫
I2
(1− 2v − 2u+ 4uv) dC(u, v)

= 12

∫∫
uvdC(u, v)− 3.

Exercise 5.17 LetX and Y be continuous random variables with copula C. Establish

the following inequalities between Blomqvist’s β and Kendall’s τ , Spearman’s ρ, and

Gini’s γ:

1

4
(1 + β)2 − 1 ≤ τ ≤ 1− 1

4
(1− β)2,

3

16
(1 + β)3 − 1 ≤ ρ ≤ 1− 3

16
(1− β)3,

3

8
(1 + β)2 − 1 ≤ γ ≤ 1− 3

8
(1− β)2.

Solution.

Exercise 5.18

Solution.

Exercise 5.19

Solution.

Exercise 5.20 Let X, Y be continuous random variables whose copula C satisfies one

(or both) of the functional equations

C(u, v) = u− C(u, 1− v), C(u, v) = v − C(1− u, v).

for joint symmetry. Show that

τX,Y = ρX,Y = γX,Y = βX,Y = 0.
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Solution. Clearly, C(1/2, 1/2) = 1/2− C(1/2, 1/2) =⇒ C(1/2, 1/2) = 1/4,

βX,Y = 4C(1/2, 1/2)− 1 = 1− 1 = 0.

Since these four are measures of concordance,

κ−X,Y = κX,−Y = −κX,Y .

From the monotonic transformation,

C(u, v) = u−C(u, 1−v), C(u, v) = v−C(1−u, v) =⇒ CX,Y = CX,−Y , CX,Y = C−X,Y .

Thus

κX,Y = κX,−Y = −κX,Y , κX,Y = κ−X,Y = −κX,Y .

Therefore, κX,Y = 0 as its range is [−1, 1].

Exercise 5.21 Another measure of association between two variates is Spearman’s

foot-rule, for which the sample version is

f = 1− 3

n2 − 1

n∑
i=1

|pi − qi|,

where pi, qi denote the ranks of a sample of size n of two continuous random variables

X, Y .

(a) Show that the population version of the foot-rule, which is

ϕ = 1− 3

∫∫
I2
|u− v|dC(u, v) =

1

2
[3Q(C,M)− 1]

(b) Show that ϕ fails to satisfy

−1 ≤ κX,Y ≤ 1, κX,X = 1, κX,−X = −1,

and

κ−X,Y = κX,−Y = −κX,Y .

Hence it is not a “measure of concordance”.
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Solution. (a) Rewrite f as

f = 1− 3n2

n2 − 1

[
n∑

i=1

∣∣∣pi
n

− qi
n

∣∣∣] · 1
n

= 1− 3E[|U − V |]

= 1− 3

∫∫
I2
|u− v|dC(u, v).

Recall that

Q(C,M) = 4

∫∫
I2
M(u, v)dC(u, v)− 1

= 2

∫∫
I2
[u+ v − |u− v|]dC(u, v)− 1

= 1− 2

∫∫
I2
|u− v|dC(u, v).

Hence

f = 1− 3

2
(1−Q(C,M)) =

1

2
[3Q(C,M)− 1].

(b) Since Q(C,M) ∈ [0, 1], f ∈ [−1/2, 1]. We can never attain −1 for f . Besides,

3

2
Q(CX,−Y ,M)− 1

2
= 6

∫
I

u− C(u, 1− u)du− 3

2
− 1

2

= 1− 6

∫
I

C(u, 1− u)du

̸= 1

2
− 6

∫
I

C(u, u)du+
3

2

=
1

2
− 3

2
Q(CX,Y ,M).

Exercise 5.22 (a) Show that

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y)

and

P (X > x, Y > y) ≥ P (X > x)P (Y > y)
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are equivalent.

(b) Show that

H(x, y) ≥ F (x)G(y), ∀(x, y) ∈ R2

is equivalent to

H(x, y) ≥ F (x)G(y), ∀(x, y) ∈ R2.

Solution. (a) Write

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y)

⇔ 1− P (X > x)− P (Y > y) + P (X > x, Y > y) ≥ (1− P (X > x))(1− P (Y > y))

⇔ P (X > x, Y > y) ≥ P (X > x)P (Y > y).

(b) It is directly from part (a).

Exercise 5.23 (a) Let X, Y be random variables with joint distribution function H

and margins F and G. Show that PQD(X, Y ) iff for any (x, y) ∈ R2,

H(x, y)[1− F (x)−G(y) +H(x, y)] ≥ [F (x)−H(x, y)][G(y)−H(x, y)],

that is the product of two probabilities corresponding to the two shaded quadrants is

at least as great as the unshaded quadrant in the following figure:

(b) Give an interpretation of quadrant dependence in terms of the cross product

ratio

θ =
H(x, y)[1− F (x)−G(y) +H(x, y)]

[F (x)−H(x, y)][G(y)−H(x, y)]

for continuous random variables.
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(c) In copula notation,

C(u, v)[1− u− v + C(u, v)] ≥ [u− C(u, v)][v − C(u, v)].

Solution. (a) From Exercise 5.22,

H(x, y)[1− F (x)−G(y) +H(x, y)] ≥ [1− F (x)][1−G(y)]F (x)G(y)

= [G(y)− F (x)G(y)][F (x)− F (x)G(y)]

≥ [G(y)−H(x, y)][F (x)−H(x, y)].

(b) If θ ≥ 1, X, Y are positive quadrant dependent, if θ ≤ 1, X, Y are negative

quadrant dependent.

(c) The interpretation is the product of two probabilities for (U, V ) corresponding

to the two shaded quadrants is at least as great as the unshaded quadrant.

Exercise 5.24 (a) Show that if X, Y are PQD, then −X, Y are NQD, X and −Y are

NQD, and −X,−Y are PQD.

(b) Show that if C is the copula of PQD random variables, then so is Ĉ.

Solution. (a) If X, Y are PQD,

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y).

One has

P (−X ≤ x, Y ≤ y) = P (X ≥ −x, Y ≤ y)

= P (Y ≤ y)− P (X ≤ −x, Y ≤ y)

= G(Y )−H(−x, y).

Since PQD,

H(−x, y) ≥ F (−x)G(y),

then

P (−X ≤ x, Y ≤ y) = G(y)−H(−x, y)
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≤ G(y)− F (−x)G(y)

= (1− F (−x))G(y)

= P (−X ≤ x)P (Y ≤ y).

The others are in the same fashion.

(b) The PQD is

C(u, v) ≥ uv.

From part (a), −X,−Y are also PQD,

C−X,−Y (u, v) ≥ uv ⇔ ĈX,Y (u, v) ≥ uv.

Exercise 5.25 Consider the random variable Z = H(X, Y )− F (X)G(Y ).

(a) Show that E[Z] = (3τC − ρC)/12.

(b) Show that ωC = 6E[Z] = (3τC − ρC)/2 can be interpreted as a measure of

“expected” quadrant dependence for which ωM = 1, ωΠ = 0, ωW = −1.

(c) Show that ωC fails to be a measure of concordance.

Solution. (a) Write

E[Z] = E[C(U, V )]− E[UV ]

=
τC + 1

4
− ρC + 3

12

=
3τC − ρC

12
.

(b) Write

6E[Z] = 6

∫∫
I2
[C(u, v)− uv]dC(u, v).

(c)

Exercise 5.26 Hoeffding’s lemma. Let X, Y be random variables with joint distri-

bution function H and margins F,G, such that E[|X|],E[|Y |] and E[|XY |] are finite.
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Prove that

Cov(X, Y ) =

∫∫
R2

[H(x, y)− F (x)G(y)]dxdy.

Solution.

Exercise 5.27 LetX, Y be random variables. Show that if PQD(X, Y ), then Cov(X, Y ) ≥

0, and hence Pearson’s product-moment correlation coefficient is on-negative for pos-

itively quadrant dependent random variables.

Solution. This is directly from Exercise 5.26.

Exercise 5.28 Show that X, Y are PQD iff Cov[f(X), g(Y )] ≥ 0 for all functions f, g

that are non-decreasing in each place and for which expectations E[f(X)],E[g(Y )],E[f(X)g(Y )]

exist.

Solution.

Exercise 5.29 Prove that if the copula of X, Y are max-stable, then PQD(X, Y ).

Solution.

Exercise 5.30

Solution.

Exercise 5.31 Let X and Y be continuous random variables whose copula is C.

(a) Show that if C = Ĉ, then LTD(Y |X) iff RTI(Y |X), and LTD(X|Y ) iff

RTI(X|Y ).

(b) Show that if C is symmetric, then LTD(Y |X) iff LTD(X|Y ), and RTI(Y |X)

iff RTI(X|Y ).

Solution. (a) LTD(Y |X), if and only if C(u, v)/u is non-increasing in u. That is

∂C(u,v)
∂u

u− C(u, v)

u2
≤ 0 =⇒ ∂C(u, v)

∂u
u ≤ C(u, v). (4.0.4)

RTI(Y |X) iff Ĉ(1− u, 1− v)/(1− u) is non-decreasing in u. Assume Ĉ = C, Ĉ(1−

u, 1− v)/(1− u) = C(1− u, 1− v)/(1− u), then

∂C(1−u,1−v)
∂(1−u)

(1− u)(−1) + C(1− u, 1− v)

(1− u)2
≥ 0

by (4.0.4).
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(b) Assume C(u, v) = C(v, u), C(u, v)/v = C(v, u)/v, the derivative

∂C(v,u)
∂v

v − C(v, u)

v2
≤ 0 ⇔ ∂C(v, u)

∂v
v ≤ C(v, u)

iff
∂C(u, v)

∂u
u ≤ C(v, u) ⇔

∂C(u,v)
∂u

u− C(u, v)

u2
≤ 0.

Exercise 5.32

Solution.

Exercise 5.33

Solution.

Exercise 5.34

Solution.

Exercise 5.35

Solution.

Exercise 5.36 Show that (a) if the function u−C(u, v) is TP2, then LTD(Y |X) and

RTI(X|Y );

(b) if the function v − C(u, v) is TP2, then LTD(X|Y ) and RTI(Y |X);

(c)the function 1− u− v + C(u, v) is TP2 iff Ĉ is TP2.

Solution. (a) u− C(u, v) is TP2, that is

F (x)−H(x, y) = P (X ≤ x)− P (X ≤ x, Y ≤ y) = P (X ≤ x, Y > y).

(b)

(c)

Exercise 5.37

Solution.

Exercise 5.38

Solution.

Exercise 5.39

Solution.
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Exercise 5.40 Let X, Y be continuous random variables whose copula C is a member

of a totally ordered family that include Π. Show that σX,Y = |ρX,Y |.

Solution.

Exercise 5.41

Solution.

Exercise 5.42

Solution.

Exercise 5.43

Solution.

Exercise 5.44 Show that kp is given by

kp =
Γ(2p+ 3)

2Γ2(p+ 1)
.

Solution.

Exercise 5.45 Show that the “ℓp” generalization of γC , ρC leads to measures of as-

sociation given by

Solution.

Exercise 5.46 Show that the “Lp” generalization of γC leads to measures of associ-

ation given by

Solution.

Exercise 5.47 Verify the entries for λU , λL.

Solution.

Exercise 5.48 Write λU(C), λL(C) to specify the copula under consideration. Prove

that λU(Ĉ) = λL(C) and λL(Ĉ) = λU(C).

Solution. Write

λU(Ĉ) = lim
t→1−

2− 2t− 1 + [2t− 1 + C(1− t, 1− t)]

1− t

= lim
t→1−

C(1− t, 1− t)

1− t

= lim
t→0+

C(t, t)

t
= λL(C).
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The other one is similar.

Exercise 5.49

Solution.

Exercise 5.50

Solution.
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